CLME An R package for linear mixed effects models under inequality constraints

Abstract

In many applications researchers are typically interested in testing for inequality constraints in the context of linear fixed effects and mixed effects models. Although there exists a large body of literature for performing statistical inference under inequality constraints, user friendly statistical software implementing such methods is lacking, especially in the context of linear fixed and mixed effects models. In this article we introduce CLME, a package in the R language that can be used for testing a broad collection of inequality constraints. It uses residual bootstrap based methodology which is reasonably robust to non-normality as well as heteroscedasticity. The package is illustrated using two data sets. The package also contains a graphical user interface built using the shiny package.

Publication
Journal of Statistical Software, 75(1)
Avatar
Casey Jelsema
Statistician | Data Enthusiast | Nerd